摘要
为降低风电场的运营成本和提高设备维护效率,提出了基于离群点检测和PSO-BP的风速预测模型。将基于距离和统计学的离群点检测方法结合,并通过分组剔除风速数据中的异常值;然后利用小波阈值去噪算法对风速数据进行去噪;最后使用粒子群算法优化后的BP神经网络进行预测。仿真结果证明,改进的离群点检测方法和小波阈值去噪降低了风速数据的波动性和随机性;对于3组不同风速数据,基于离群点检测和PSO-BP预测模型的预测精度均高于其他对比模型。
-
单位重庆邮电大学; 武汉铁路职业技术学院