摘要

目的针对传统的基于多尺度变换的图像融合算法的不足,提出了一种基于W变换和2维经验模态分解(BEMD)的红外与可见光图像融合算法。方法首先,为了更有效地提取图像的高频信息,抑制BEMD中存在的模态混叠现象,提出了一种基于W变换和BEMD的新的多尺度分解算法(简称W-BEMD);然后,利用W-BEMD对源图像进行塔式分解,获得图像的高频分量WIMFs和残差分量WR;接着,对源图像对应的WIMFs分量和WR分量分别采用基于局部区域方差选择与加权和基于局部区域能量选择与加权的融合规则进行融合,得到融合图像的W-BEMD分解;最后,通过W-BEMD逆变换得到最终融合图像。W-BEMD分解算法的主要思想是通过W变换递归地将BEMD分解过程中每层所得低频分量中滞留的高频成分提取出来并叠加到相应的高频分量中,实现更有效的图像多尺度分解。结果对比实验结果表明,本文方法得到的融合图像视觉效果更佳,既有突出的红外目标,又有清晰的可见光背景细节,而且在平均梯度(AG)、空间频率(SF)、互信息(MI) 3个客观评价指标上也有显著优势。结论本文提出了一种新的红外与可见光图像融合算法,实验结果表明,该算法具有较好的融合效果,在保留可见光图像中的细节信息和突出红外图像中的目标信息方面更加有效。