摘要
近年来,通过聚合知识图谱中附加的项目信息进行推荐取得了优异的成果,但用户信息来源相对较少,同时多重聚合会使项目自身特征表达不全,甚至发生噪音.针对以上两点,提出基于知识图谱的双重感知网络推荐算法KGDP.首先,从用户交互记录中随机选取部分项目作为用户相关项目,以及选取项目的邻居实体作为项目的相关实体;然后,将选取的用户相关项目经过深度神经网络融合为用户特征,丰富了用户特征,同时单独聚合项目的相关实体;其次,经过两个深度神经网络使用户分别感知项目特征和邻居特征,即非线性交互;最后,通过一个单层感知机调节交互特征的输出权重进行评分预测.在推荐算法常用的两个真实数据集上进行实验,较基线模型AUC指标分别提升了9.2%、2.4%;ACC指标提升了6.6%、1.9%,F1指标分别提升了7.0%、1.1%;Precision@N指标分别提升了28.8%、6.5%;Recall@N分别提升了4.0%、23.7%;F1@N指标分别提升了43.3%、8.4%.
- 单位