摘要
近年来,随着机器学习的发展,分类系统的性能有了很大的飞跃。模型需要大量带标签数据才能使训练结果达到要求,而获取高质量的标注数据费时费力。为了降低成本,出现了众包、自动化系统等方法标注训练数据。但是,这些标注方法往往会产生大量错误标注,即标签噪声。另外,信息不足、专家错误和编码错误等因素,也可能使标签受到污染。训练过程中对标签噪声的处理不当,可能会使预测精度和准确性降低,或者使模型复杂度增加。因此,研究标签噪声对推广机器学习在各领域的应用和降低机器学习算法的部署成本等方面具有重要意义。通过综述产生标签噪声的原因、影响以及近几年来应对标签噪声的一些技术方法,对标签噪声的研究现状和发展前景进行分析。
-
单位北京信息科技大学; 北京跟踪与通信技术研究所