摘要

由于田间害虫种类多,大小、形态、姿态、颜色和位置变化多样,且田间害虫的周围环境比较复杂,使传统田间害虫检测方法的性能不高,而现有基于卷积神经网络的作物害虫检测方法采用固定的几何结构模块,不能有效应用于田间多变的害虫检测。该研究在VGG-16模型的基础上构建了一种可形变VGG-16模型(Deformable VGG-16,DVGG-16),并应用于田间作物害虫检测。在DVGG-16模型中,引入可形变卷积后能够适应不同形状、状态和尺寸等几何形变的害虫图像,提高了对形变图像的特征表达能力,然后利用1个全局平均池化层替代VGG-16模型中的3个全连接层,以加快模型的训练。通过DVGG-16模型与VGG-16模型对比试验发现,DVGG-16模型提升了对田间害虫图像的形状、大小等几何形变的适应能力,在不改变图像空间分辨率的情况下,实现了对不规则田间害虫图像的特征提取,在实际田间害虫图像数据库上的检测准确率为91.14%。试验结果表明,DVGG-16模型提升了VGG-16模型对害虫多样性图像的特征表达能力,具有一定的图像形变适应能力,能够较准确地检测到田间形状变化多样的害虫,可为田间复杂环境下作物害虫检测系统提供技术支持。