摘要

对边界几何形状、位置随时间变化的变边界结构,给出了用复变函数求解粘弹问题的解析方法.文中用拉普拉斯变换结合平面弹性复变方法,对内外边界变化时粘弹性轴对称问题进行求解.引入两个与时间、空间相关的解析函数,给出了变边界情况下应力、位移以及边界条件与解析函数的关系.当解析函数形式部分确定,则可用边界条件求解其中与时间相关的待定函数.求解待定函数的方程一般情况下为一系列积分方程,特殊情况可求得解析解.对轴对称问题中应力边值问题、位移边值问题以及混合边值问题,分别利用边界条件求得相关系数,从而得到了应力与位移的解析表达.当取Boltzmann粘弹模型时,进行不同边值问题的分析.分析显示,应力、位移的形态...

全文