摘要

为探索快速高效测定大麦籽粒中抗性淀粉含量的方法,利用衰减全反射中红外(attenuated total reflection mid-infrared spectroscopy,ATR-MIR)和近红外(near-infrared spectroscopy,NIR)光谱技术,分别用3种不同方法进行预处理,建立大麦样品的抗性淀粉含量快速测定红外模型,通过不同预处理预测模型的校正和内部交叉验证结果的比较,依据决定系数(R2)和均方根误差(RMSE)筛选出基于ATR-MIR和NIR光谱的最佳预测模型,再对最佳预测模型进行外部验证。结果表明,经基线位移校正+范围归一化(BOC+RN)预处理后的PLS模型为最佳ATR-MIR预测模型;经标准正态变换+Savitzky-Golay法一阶求导(SNV+1thD)的预处理模型为最佳NIR预测模型。用验证集材料对BOC+RN和SNV+1thD最佳预测模型的预测效果进行外部验证,光谱预测值与化学测定值之间没有显著差异,说明两种方法均可以用于大麦籽粒抗性淀粉含量测定;ATR-MIR光谱比NIR光谱具有更好的预测能力。

  • 单位
    长江大学; 主要粮食作物产业化湖北省协同创新中心; 农业科学院