摘要
针对齿轮箱轴承故障识别率低、故障信号不平稳的问题,提出层次熵与小波包能量多源数据融合轴承故障诊断方法。采用小波包对轴承正常、内圈、外圈、滚动体故障等4种振动信号进行三层小波包分解并重构,计算各频段样本熵(即层次熵)和小波包能量作为故障特征向量集;应用归一化方法对2种特征向量处理后分别建立BP神经网络模型实现轴承不同故障模式的诊断;最后应用D-S证据理论,通过小波包能量和层次熵以及两者融合信息的故障诊断结果比较,表明基于神经网络和D-S证据理论相结合方法用于复杂机械的故障诊断是可行和有效的。
- 单位