摘要

为了解决航空发动机涡轮叶片早期裂纹故障信号微弱、难以识别的问题,提出一种基于三维叶尖间隙集成经验模态分解(EEMD)能量熵融合的涡轮叶片早期裂纹诊断方法。采集涡轮叶片三维叶尖间隙信息,利用EEMD分别对三维叶尖间隙各维信号进行处理,得到相应的固有模态函数(IMF),以此计算每一维信号分量EEMD能量熵,构建能表征叶片裂纹状态的不同EEMD能量熵高维矢量集。建立多个堆叠自动编码器(SAE)分别对各高维矢量集进行特征学习并提取所学习的深层特征表达。利用支持向量机算法(SVM)和遗传算法(GA)融合各维深层特征以综合不同维度信息进而充分判定叶片裂纹状态。通过涡轮叶片裂纹诊断试验,结果表明:所提方法能有效提高叶片早期裂纹诊断精度,其平均准确率达到98.415%,标准差仅为0.697%,具有很好的稳定性、泛化性和自适应性。

全文