摘要
[目的]针对影像上纯净、混合像元共存的现象,文章结合硬分类方法和软分类方法各自的优势,提出了目标地物信息的软硬结合的分类方法。[方法]该方法将遥感影像划分为典型目标地物像元、非目标地物像元和混合目标地物像元3个部分。典型的目标地物像元和非目标地物像元,采用硬分类方法(ISODATA)聚类确定类型;混合目标地物像元采用非线性支撑向量回归混合像元分解模型,从目标地物端元光谱库和非目标地物端元光谱库中多次随机选择像元,进行目标地物不同丰度值的混合像元模拟,构建样本库进行支撑向量回归,提取出混合像元的目标地物丰度。该文以冬小麦为研究对象,选用2006年4月7日的TM影像,采用软硬结合的分类方法进行冬小麦识别。[结果]较传统的硬、软分类方法,软硬结合分类方法精度高,总体精度达到了90.2%;而软分类方法为86.6%,硬分类方法为81.6%。[结论]软硬结合的分类方法克服了硬分类方法对混合像元信息提取受到光谱不确定影响,也克服了软分类方法受到光谱异质性干扰的问题。该分类方法简便、易操作,适合单目标特定地物的信息提取。
-
单位北京师范大学; 北京工业职业技术学院