摘要

传统文本情感极性判断时易忽视外部信息的有效性,进而导致最终分类准确性不高。基于心理健康,构建CNN-BiLSTM-Att文本情感分类模型。首先,构建基于主题模型的BiLSTM和CNN情感分类模型;其次,将BiLSTM和CNN采用并行融合,构建CNN-BiLSTM文本情感分类模型,为提高情感极性词语分类的准确性,引入Attention机制对CNN-BiLSTM模型进行改进;最后,以Stop Words数据集对设计的模型进行实验验证。结果表明,相较于对比模型,研究构建模型性能更优越,可提升情感分类的准确率。

  • 单位
    重庆房地产职业学院

全文