摘要

针对现有的基于用户轨迹的跨社交网络用户身份识别算法未考虑用户轨迹中的位置访问顺序特征的缺点,该文提出一种基于Paragraph2vec的跨社交网络用户轨迹匹配算法(CDTraj2vec)。首先将用户轨迹转化为易于处理的网格化表示,并按照一定的时间粒度、距离尺度对原始的用户轨迹进行划分,使用户轨迹中的位置访问顺序特征易于抽取;然后利用Paragraph2vec算法中PV-DM模型抽取轨迹序列中位置访问顺序特征,得到用户轨迹的向量表示。最后通过用户轨迹向量判定轨迹是否匹配。在社交网络BrightKite上的实验结果表明,与基于位置访问频率或者基于轨迹间距离的方法相比,F值提高了2%~4%个百分点,所提算法能够有效地抽取出用户轨迹中的位置访问顺序特征,更加准确地实现了基于用户轨迹的跨社交网络用户身份识别。