摘要

局部特征尺度分解(local characteristic-scale decomposition, LCD)方法在改善了经验模态分解(empirical mode decomposition, EMD)方法的同时,也继承了EMD的模态混叠问题。噪声辅助分解是解决EMD模态混叠问题的主要方法之一,但由于LCD对于噪声更加敏感,如果采用总体平均经验模态分解(ensemble empirical mode decomposition, EEMD)方法中的白噪声作为辅助信号不仅不能够有效地改善LCD中的模态混叠问题,还会产生较多的虚假分量。对此,提出一种改进的LCD方法——匀相窄波局部特征尺度分解方法(uniform phase local characteristic-scale decomposition, UPLCD)。UPLCD采用具有均变相位的窄波信号来代替白噪声作为辅助分解信号,能够在抑制LCD模态混叠的同时,避免白噪声带来虚假分量增多的情况。通过仿真信号分析,验证了UPLCD方法抑制模态混叠的有效性。并将所提出的方法应用到机械故障诊断中,和EEMD、LCD和匀变相位经验模态分解(uniform phase empirical mode decomposition, UPEMD)等方法对比,结果表明,所提出的UPLCD方法能够有效地处理旋转机械故障模态信号,在分解精度和抑制干扰信号等方面更具优势。

全文