摘要

3D车辆检测是自动驾驶场景中的一个关键问题,涉及到3D目标检测与目标分类。目前的3D检测与分类网络对于所有输入的点云数据一视同仁,但在实际检测过程中,点云中不同点对于检测的重要程度可能并不相同。为了得到更好的检测结果,通过引入注意力机制来得到不同点的特征的权重,从而在回归时让部分点的特征得到更多的重视。实验表明,该算法在保证实时效率的前提下,与现有算法相比,具有更高的准确度。