摘要

慢特征分析(SFA)方法可以从非平稳时间序列中提取出慢变的外强迫信息。近年来,SFA方法被应用于气候变化研究领域,用于探究气候变化的潜在驱动力及相关的动力学机制。本文基于SFA方法,提取全球陆地表面气温(LSAT)的慢变外强迫信息,研究全球LSAT慢变驱动力的空间结构特征及低频变率的主要驱动因子。SFA方法提取的LSAT慢变驱动力与历史时期全球辐射强迫(GRF)和全球海表温度(SST)的主模态(大西洋多年代际振荡AMO、热带太平洋ENSO变率和太平洋年代际振荡PDO)有显著的相关关系,表明全球大部分地区LSAT的变率受到GRF和三个SST模态的显著影响。GRF对LSAT变率的影响有全球一致性的特征,而三个SST模态对LSAT变率的影响则呈现出明显的区域特点。此外,由于SFA方法可以有效降低原始LSAT序列中随机噪声的干扰,GRF和SST模态对LSAT变率的解释方差显著提高,进一步表明GRF和SST模态是全球LSAT低频变率主要的驱动因子。最后,利用历史海温驱动AGCM试验(即AMIP试验)的结果,验证了三个SST模态对区域LSAT变率的显著影响。