摘要

在大规模多输入多输出(multiple input multiple output, MIMO)系统中,压缩感知(compressed sensing, CS)技术常用于具有稀疏特性的信道状态信息(channel state information, CSI)反馈。针对CS重构时信道稀疏度通常未知的问题,基于深度展开技术提出了一种变化信道稀疏度的CSI反馈方法(a CSI-feedback method for varying channel sparsity, AVCS)。AVCS将信道稀疏度作为训练参数,学习得到通用的网络架构。随着天线数量增大导致信道(矩阵)维度激增,学习网络所得的相互抑制矩阵会呈现二次增长问题,AVCS利用相互抑制矩阵托普利兹(Toeplitz)特性设计了降维卷积网络,解决CSI反馈时的计算复杂度问题。仿真结果表明,所提方法提高了在大规模MIMO系统下CSI重构的适用性,减少了反馈开销且对信道稀疏度具有鲁棒性。