构建三维深度监督网络的断层检测方法

作者:王静; 张军华*; 芦凤明; 孟瑞刚; 王作乾; 常健强
来源:石油地球物理勘探, 2021, 56(05): 947-923.
DOI:10.13810/j.cnki.issn.1000-7210.2021.05.002

摘要

地震资料人工解释断层往往具不确定性。随着计算机和人工智能的发展,深度学习技术越来越多地应用于地球物理领域,多种基于卷积神经网络的算法也广泛地应用于断层识别。为此,结合三维U-Net和深度残差网络,引入多层深度监督的机制,构建了一种基于三维深度监督网络的断层检测方法。残差模块的引入能够简化网络的学习目标,降低训练难度,而多层的深度监督能够为网络提供更多的反馈,减轻训练过程中潜在的梯度消失,使解码器子网络能够学习到不同尺度的断层语义信息,可进一步提高断层识别的准确性。理论模型测试和实际地震资料的应用表明,该方法可以有效识别断层位置;与常规U-Net网络相比,减少了小断层的漏识别和错误识别;识别的大断层连续性好,断层细节更丰富,明显提高了断层识别的准确性。