摘要

为了提高桥梁病害检测自动化水平,解决当前人工检测耗时费力和传统图像分割方法存在去噪效果不明显、分割后裂缝连续性较差等问题,提出了一种基于全卷积神经网络的BCI-AS(Bridge Crack Image-Automatic Segmentation)桥梁裂缝自动分割模型和一种基于投影技术的最小二乘拟合中心线的裂缝宽度测量算法。基于BCI-AS的模型对桥梁裂缝图像数据集进行了精确的像素级分割,分割准确率达到94.45%。基于投影技术最小二乘拟合中心线的算法对分割的裂缝二值图进行了宽度测量,结果表明相对误差在7%以下,证明了所提出具体算法对裂缝分割和裂缝宽度计算的可行性。

全文