摘要

设Γ=(G,σ)是一个符号图,其中G是Γ的基图.设r(G,σ)是Γ的秩.[Linear Algebra Appl.,2018,538:166-186]和[Linear Multilinear Algebra,2019,67:2520-2539]分别证明了r(G)-2c(G)≤r(G,σ)≤r(G)+2c(G),其中,r(G)和c(G)分别是G的秩和圈空间维数.本文主要证明没有符号图的秩能够达到r(G)+2c(G)-1和r(G)-2c(G)+1,并且证明了存在无穷多个符号图的秩r(G,σ)=r(G)+2c(G)-s,其中s∈[0,4c(G)]且s≠1及4c(G)-1.