一种输油泵机组故障诊断与健康评估方法

作者:李亚平; 李素杰; 马波; 刘鹏勃; 郭俊霞*
来源:北京化工大学学报(自然科学版), 2022, 49(05): 101-107.
DOI:10.13543/j.bhxbzr.2022.05.013

摘要

输油泵机组是长距离油品传输的关键设备,有效预防其出现突发故障、减小故障造成的损失至关重要。然而目前针对输油泵的故障诊断方法在现场应用时普适性不佳,且缺乏针对机组一体的监测诊断研究,不利于计划性维修。此外,受现场可提供数据的限制,现有的输油泵状态评估方法在很多现场无法使用。针对上述问题,提出一种输油泵机组故障诊断与健康评估方法,利用迁移学习提高输油泵故障诊断在工业现场应用时的准确率;通过搭建实验台并对电机运行状态进行监测、分析,构建电机机械类故障诊断模型;构建基于卷积-长短期记忆神经网络(CNN-LSTM)的状态评估模型,并以此为基础利用时序卷积网络(TCN)结合注意力机制进行状态趋势预测。在现场试运行的结果表明,本文提出的故障诊断及状态评估方法可以及时发现设备的早期故障,为设备运维提供有效的数据参考。

全文