摘要

使用卷积神经网络去实现合成孔径雷达(synthetic aperture radar,SAR)自动目标识别(auto target recognition,ATR)成为了近年来的热点,但实际使用中存在的一个隐患问题是平移不变性的丢失,随着目标位置移动,系统输出也随之改变,从而造成错误识别。针对上述问题,提出了一种落实在模型层面的解决方法,通过对算法的改进,实现提升SAR ATR系统平移不变性,而无需数据增强。提出的模块易于移植到现有SAR ATR骨干网络中,且通过实测兼容良好,引入后不影响识别准确率,达到了与原网络近似相等甚至更高的精度。结果表明,所提出的算法不仅提升了系统的平移不变性,同时提升了系统的抗干扰能力。