摘要
为了合理选择样本条件以实现高效的智能化诊断,以及克服智能化方法中传统反向传播(back propagation, BP)网络权值较多、局部信息提取能力不足的问题,对基于卷积神经网络(convolutional neural network, CNN)的开路故障诊断方法进行研究,并以典型的三相两电平逆变器为具体对象,着重分析样本时长、样本数量变化时,CNN方法相较于BP网络方法在网络权值数量、训练稳定性、诊断准确率上的量化优势。结果表明,基于CNN的方法可在权值数量远少于BP网络方法的情况下构建深度更深的诊断模型,并在更短样本时长、更少训练样本数量下实现高效、准确的开路故障诊断。
- 单位