摘要
卷积神经网络(Convolutional Neural Networks,CNN)可以提供比传统分类算法更强大的分类器并且能够自学习得到深层特征,有效地提高了图像语义分割的准确性.然而,基于CNN的语义分割算法依然存在一些挑战,例如在复杂场景中现有较优的方法较难分割小目标.为了解决复杂场景下小目标分割的难题,提出一种结合目标检测的小目标语义分割算法.与现有较优方法不同的是,该方法没有直接利用单个神经网络模型同时分割单幅图像中的小尺寸和较大尺寸目标,而是将小目标分割任务从完整图像的分割任务中分离.算法首先训练一个目标检测模型以获取小目标图像块,然后设计一个小目标分割网络得到图像块的分割结果,最终根据该结果修正整体图像的分割图.该算法提升了语义分割数据集的总体性能,同时能够有效地解决小目标分割的难题.
- 单位