摘要

针对机械材料缺陷识别准确率低的问题,提出一种基于改进反卷积单激发多框探测器(DSSD)网络的机械材料缺陷识别方法。首先以Residual101为基础网络,通过减少反卷积层数量以提高检测速度,然后采用K-means聚类算法优化目标检测框的长宽比,提高对机械材料缺陷识别的准确率和检测速度。结果表明,通过改进DSSD网络可实现机械材料缺陷检测,且相较于DSSD网络和常用目标检测网络YOLO、SSD、Faster-RCNN,改进DSSD网络的缺陷识别平均准确率更高,平均检测时间更短,分别达到85.9%和0.141 s,具有一定的有效性和优越性。