摘要
作业场景重建可为智能农机自主作业提供全局信息与局部细节,针对因农田表面缺乏高区分度的点、线、面高层结构造成的特征描述性差、点云配准精度不足的问题,提出一种基于旋转曲面轮廓特征的农田地表点云配准方法。首先,采用32线激光雷达获取农田真实地表点云数据并完成去噪、降采样等预处理;然后,采用加权线性协方差矩阵的奇异值分解确定关键点唯一局部参考坐标系,并统计关键点与旋转曲面截面交点距离信息,生成地表点云的局部特征;最后,采用基于单特征初选与局部特征精匹配原则的多级特征匹配策略进行局部特征匹配,计算旋转矩阵与平移矩阵完成点云配准。试验结果表明,旋转曲面轮廓特征与其他特征相比,平均精度增加7.5个百分点,平均召回率增加24.09个百分点;多级特征匹配策略相对于最近邻搜索策略,平均精度增加12.68个百分点,平均召回率增加18.38个百分点;本文的点云配准方法的平均平移误差为23.59dr,平均旋转误差为3.72°,配准成功率为87.5%。因此,本文提出的基于旋转曲面轮廓特征的农田地表点云配准方法适用于真实农业地表无序点云的自动配准。
- 单位