摘要

针对火炮自动机故障状态监测问题,提出了一种基于支持向量数据描述的故障状态监测模型。利用搭建的自动机振动测试平台获取自动机振动信号,采用变模态分解方法将振动信号分解为多个本征模态分量,计算各个分量的样本熵值作为故障特征,并以正常状态下的自动机故障特征为训练样本进行SVDD模型的训练,训练过程中根据模型特点找到合适的模型参数,完成自动机状态监测模型的构建。在自动机测试平台上设置多种预制零件故障进行模型的验证,结果表明所建立的状态监测模型对异常状态的发生有很强的敏感性,具有较高的检测准确率;同时设计了关重件模拟性能退化试验,试验结果验证了所提出的模型具有良好的早期故障检测能力,可较为准确地反映自动机故障性能退化过程,可为火炮自动机故障状态监测提供一定的借鉴和指导。

  • 单位
    中国人民解放军陆军工程大学