摘要
基于序列分解—参数优化—分项预测—结果叠加思想,构建奇异谱分析(SSA)-梯度优化(GBO)算法与相关向量机(RVM)、支持向量机(SVM)集成的中长期月径流预测模型。首先采用SSA方法对实例月径流数据进行处理,提取多个独立的子序列;其次介绍GBO算法原理,基于6个典型函数对GBO算法进行仿真测试。利用GBO算法优化RVM核宽度因子和超参数、SVM惩罚因子和核函数参数,分别建立SSA-GBO-RVM、SSA-GBO-SVM模型对各子序列进行预测,叠加后作为最终月径流预测结果;最后以云南省龙潭站65年共780个月月径流预测为例,选取实例前53年作为训练样本,后10年共120个月作预测样本对SSA-GBO-RVM、SSA-GBO-SVM模型进行检验。结果表明:GBO算法在不同维度条件下寻优效果优于MPA、PSO算法,具有较好的寻优精度和全局搜索能力。SSA-GBO-RVM、SSA-GBO-SVM模型对实例120个月月径流预测的平均绝对百分比误差分别为6.20%、7.82%,平均绝对误差分别为0.88、1.00 m3/s,纳什系数分别为0.992 6、0.991 3,均具有较好的预测精度和较高的可信度。相对而言,SSA-GBO-RVM模型优于SSA-GBO-SVM。
-
单位云南省水文水资源局