摘要
针对车载电池SOC难以精确预测的问题,提出以CPSO算法优化LSSVM模型参数,避免了参数选择的盲目性,提高了测量精度及泛化能力。利用ADVISOR软件采集车载电池各项性能参数,其中,电流、电压及温度数据作为CPSO-LSSVM预测模型的输入,SOC作为预测模型的输出。验证结果表明:CPSOLSSVM相比PSO-LSSVM预测模型预测最大绝对误差降低了3.06%,平均相关误差降低了0.35%,为车载电池SOC的预测提供一新方法。
-
单位江苏理工学院