摘要
针对主流的双流卷积神经网络在提取特征过程中,存在特征利用率低、忽略特征图各个部分之间的相互作用以致区分相似动作效果不佳的问题,提出一种基于深度特征融合和注意力机制的行为识别方法。利用不同层次卷积神经网络特征的互补优势,将网络中的低层和高层信息相融合,引入改进的注意力机制,捕获人体行为整体特征和不同类别之间的细微差别,提高网络性能。在数据集UCF-101上取得了94.5%的识别效果,将UCF-101数据集预训练网络模型迁移至相似动作数据集SDUFall上,同样表现良好,验证了所提方法的有效性。
-
单位通信与信息工程学院; 上海大学