摘要

提出了一种石墨化炭黑过滤吸附前处理抑制轻质燃油拉曼光谱荧光背景干扰的方法和一种改进的系统聚类分析算法,实现了39个样品的种类快速识别,即能自动将样品识别为0#车用柴油、 0#普通柴油、 97#车用汽油、 93#车用汽油、 90#车用汽油和3#喷气燃料等6种类型。过滤吸附处理方法是用定制的50 mg石墨化炭黑过滤吸附0.75 mL油样,然后对其进行拉曼光谱数据采集。试验结果证明:石墨化炭黑过滤吸附处理对无荧光背景干扰的3#喷气燃料和车用汽油样品拉曼光谱特征无明显影响,且能够有效抑制车用汽油和车用柴油样品的拉曼弱荧光背景干扰,以及车用汽油和普通柴油的强荧光背景干扰。改进的有监督系统聚类分析算法将普鲁克距离作为系统聚类分析中样本间相似度的评价方法;并将经典的系统聚类分析视为标准校正样品集的"建模"过程,通过计算未知样品与各类属中心向量之间的普鲁克距离,依据距离最小原则判断未知样品的类属。通过对39个具有不同拉曼荧光背景干扰特征油样的石墨化炭黑前处理和"留一法"交互验证分类识别,分析结果证明:石墨化炭黑过滤吸附前处理抑制拉曼光谱荧光背景的方法能够有效提取轻质燃油的拉曼光谱特征并应用于定性种类识别。

  • 单位
    中国人民解放军陆军勤务学院