基于天气因素的共享单车骑行量预测

作者:晏鹏宇; 张华; 王雪; 黎鹏; 刘雨轩; 杨东
来源:电子科技大学学报(社科版), 2021, 23(06): 1-9.
DOI:10.14071/j.1008-8105(2021)-3014

摘要

【目的/意义】气温、降雨量和风力等天气因素对共享单车骑行量构成了非线性影响,而传统的多元线性回归模型以及基于时序的预测模型,由于其对非线性关系表达能力不足,预测结果往往存在较大误差。【设计/方法】在单车价格等经济因素以及市场竞争态势等相对稳定情况下,结合用户潮汐骑行规律和地理空间兴趣点数据构建了基于BP神经网络的天气因素对共享单车骑行量的预测模型,并利用成都市某区域内摩拜单车骑行与天气数据,分别训练了"逐日"和"逐时"为单位的BP预测模型。【结论/发现】对比实验结果表明,基于BP神经网络的预测模型具有更高的预测准确度,实验结果还表明不同兴趣点在不同时刻的骑行量受温度和降雨量的影响程度差异较大。研究结果为共享单车公司实现基于天气因素的单车骑行量预测提供了科学方法,并且为单车数量的精准投放与回收提供了依据。

全文