基于特征工程的视频点击率预测算法

作者:匡俊; 唐卫红; 陈雷慧; 陈辉; 曾炜; 董启民; 高明
来源:华东师范大学学报(自然科学版), 2018, (03): 77-87.
DOI:10.3969/j.issn.1000-5641.2018.03.009

摘要

点击率预测技术在视频推荐系统中具有重要的作用.视频推荐系统可以根据点击率预测的结果调整投放顺序,从而提高用户的真实点击率.在点击率预测问题中,由于数据存在海量性以及不平衡性等问题,点击率预测的精确度一般都较低.针对以上问题,使用特征工程和机器学习相结合的方法,有效地改进了现有的视频点击率预测算法的性能.首先,使用特征工程方法,从原始数据中提取特征,并使用矩阵分解等方法生成交叉特征;然后,分别基于逻辑回归、因子分解机和梯度提升决策树-逻辑回归实现点击率预测模型.实验结果表明,基于因子分解机模型和基于梯度提升决策树-逻辑回归模型的预测精度要优于基于逻辑回归的模型,并且将用户特征和视频特征进行交叉组合能够改进点击率预测的精度.

全文