针对TSK模糊模型的学习是多约束和多目标优化问题,提出一种基于GA-BP的TSK模糊模型学习方法。论述了所涉及的相关问题,包括模型结构的种群编码、进化策略及其适应值评估策略,推导了在进化过程中模糊模型前件和后件参数的BP算法。仿真结果表明:该方法具有先验知识要求少、获取的模型具有较好的精确性和简洁性等特点。