摘要
针对故障轴承振动信号中含有强烈的背景噪声,难以提取故障信息的情况,提出了一种基于奇异值分解(singular value decomposition,SVD)、集合经验模式分解(ensemble empirical mode decomposition,EEMD)和BP神经网络的轴承故障诊断方法。应用SVD对轴承故障信号降噪处理后进行EEMD分解,获得其多个固有模态函数(intrinsic mode function,IMF)分解量,使用相关分析提取含有主要故障信息的IMF分量。从选取的IMF分量中提取故障特征参数,并将归一化后的故障特征参数作为BP神经网络输入参数进行轴承故障诊断。实验结果表明该方法能有效识别滚动轴承的故障类型,可用于轴承故障诊断。
- 单位