在互联网+环境下,将舆情监控应用到企业决策中是一个趋势。本文提出一种与企业需求契合度高且能更充分地提取情感特征的模型。将社交平台和互联网营销平台评论信息进行预处理,并使用Word2vec技术获取文本的词向量表示,通过CNN提取特征、BiLSTM提取上下文语义特征,再加入条件随机场模型对标签序列进行优化。最后使用K-means聚类得到企业网络舆论焦点。经在真实数据集上对比实验,验证了模型的有效性。