摘要

齿轮振动信号具有非平稳性和非线性的特点。为了准确提取其故障特征并进行故障诊断,提出一种基于双树复小波变换(DTCWT)-最大熵谱估计(MESE)和惯性权重线性递减粒子群优化(LDWPSO)算法-参数优化概率神经网络(PNN)的齿轮故障诊断方法。首先,利用DTCWT把状态已知的齿轮振动信号分解为不同频带的模态分量。其次,采用MESE得到每个分量的最小偏差频谱估计,计算出不同频段的能量熵作为故障特征矩阵。然后利用LDWPSO算法寻找出最优神经网络参数——平滑因子。最后,将故障特征矩阵输入优化后的PNN模型,建立起故障特征和齿轮运行状况之间的数值化映射关系,进而完成齿轮故障诊断模型。经试验数据分析表明,采用提出的DTCWT处理齿轮的振动信号,并引入MESE处理关键分量,可以提取稳定的信号特征并降低噪声干扰。另外,相比于传统的PNN,基于改进的PNN的齿轮故障状态的数值化判别具有更高的诊断精度和稳定性。

  • 单位
    中国航空工业集团公司沈阳飞机设计研究所