摘要
影响边坡稳定的因素繁杂多变,给边坡的稳定性评价与预测带来了困难,神经网络能够通过自学功能从样本数据中获取复杂的非线性关系,适用于解决边坡稳定性评价问题。因此,通过Python语言建立了BP神经网络模型,在此基础上借助粒子群算法提高模型的收敛速度与预测精度,建立了基于粒子群算法优化BP神经网络实现边坡形变数据的分析预测模型,选取边坡土体的容重、黏聚力和内摩擦角等6个主要影响因素作为评判边坡稳定性的指标,将神经网络模型得到的预测结果与实际数据进行对比,结果表明利用粒子群算法优化后得到的预测值误差更小,验证了该模型的合理性和有效性。
- 单位