摘要

针对雾(霾)会显著降低基于图像制导武器的可见光侦测设备成像质量,从而干扰对目标精确识别的问题,提出一种基于条件生成对抗网络的单幅图像去雾算法。在生成器下采样中使用软池化运算,以提高细粒度特征的提取能力;加入全局平均池化层,旨在消除图像边缘的震荡效应,提高去雾图像清晰度;简化判别器结构,优化损失函数权重值确定方法,提升网络模型训练效率。实验结果表明:去雾后的图像清晰锐利,色彩自然,在结构相似性、峰值信噪比和图像信息熵等客观定量指标上优于经典去雾算法,对去雾后图像进行目标检测的平均精度均值提升了4.13%。