摘要
针对金属工件表面缺陷分类问题,提出一种基于粒子群算法的RBF(Radialbasisfunction)神经网络对金属工件表面缺陷进行分类的方法。本文采用线性递减权重法确定PSO算法中的惯性权重,用于消除PSO算法容易早熟及后期容易在全局最优解附近产生振荡现象。将线性递减权重法改进的粒子群算法运用于RBF神经网络,确定RBF神经网络中权值和阈值的最优解,并对RBF神经网络进行训练从而提高分类精度。对比实验结果表明,改进的RBF神经网络对工件表面缺陷的分类平均准确率可达94%,对比标准RBF神经网络分类和BP神经网络分类准确率有较大提高。
-
单位机电工程学院; 长春工业大学