摘要
基于特征点的视觉里程计在点特征稀少的环境下难以得到足够的匹配点对,从而导致相机运动估计失败,因而提出采集人造环境中特征明显的边缘作为线特征来提高视觉里程计算法的稳定性。采用深度相机获取的RGB图像进行LSD线特征提取,推断线特征对应的图像位置的深度信息,避免深度缺失,将线段上的2D点反投影为3D点,拟合3D点为三维直线,利用线特征匹配关系进行位姿估计。此外在位姿优化部分进行改进,利用拟合直线过程中的最佳过点,以及重投影的线段与观测线段的角度误差信息,推导了误差关于位姿扰动的雅克比矩阵,在图优化时利用重投影误差优化相机位姿,拓展了传统的优化方法。基于TUM缺少点特征的数据集的实验结果表明所提出的线特征视觉里程计方法相比ORB-SLAM2的轨迹估计精度提高63%,并能完整地跟踪轨迹。实验结果表明所提出算法在欠特征点环境中表现出了较高的精度和稳定性。
- 单位