摘要

流场的特征直接影响结构的流致振动状态,对结构绕流流场的特征分析具有重要的研究意义。在中高雷诺数情况下,物体尾流的流场特征极为复杂,难以通过传统方法进行其特征的提取与识别。该文提出了采用无量纲的物理量时程进行流场特征识别的深度学习方法,消除了不同来流速度的影响,仅通过时程的时变特征进行特征识别,扩大了特征识别方法的应用范围。采用两种不同深度学习模型对三种棱柱的尾流进行了特征提取与识别,通过比较可以发现:归一化的时程中仍包含不同形状物体所引起流场的关键特征,可用于流场的特征提取;使用归一化时程进行流场特征识别可降低模型训练难度,又提高了特征提取的精度,是一种流场特征提取的新方法。