摘要

目的提出基于最小二乘支持向量机(LSSVM)算法的学习模型,以提高中医临床血压数据预测的准确度和效率。方法将LSSVM学习模型应用于中医临床血压数据预测。用LSSVM等式约束代替支持向量机不等式约束,将二次规划问题转化为线性方程求解问题,降低计算复杂性,加快算法收敛速度。收集320例患者的临床脉图参数及血压数据,以其中300例样本作为训练样本,训练得到LSSVM学习模型,以其余20例样本作为测试数据,用得到的LSSVM学习模型根据患者的脉图参数预测血压数据。结果实验证明,LSSVM学习模型对血压数据有较好的预测准确度。其中基于多项式核函数的LSSVM学习模型较基于径向基核函数LSSVM学习模型表现出更好的学习和预测能力,基于多项式核函数的LSSVM学习模型中收缩压、舒张压、平均动脉压预测结果的平均预测误差分别为7.88%、8.40%、6.67%,低于基于径向基核函数的LSSVM学习模型的预测误差(分别为7.95%、9.70%、7.48%)。结论本实验提出的基于LSSVM的学习模型仅通过患者的临床脉图参数就可预测患者血压数据,对中医学临床诊断有一定的参考价值。

全文