为了理论解决BP神经网络在进行多目标预测中出现的识别率和可信度不高的问题,提出了一种基于DS证据理论优化的BP神经网络预测模型用于疾病预测,实验中,对心脏病数据进行处理,结果表明,在预测准确度和算法鲁棒性方面,都具有较好的效果。