摘要

对于大规模SVM训练样本数据,在分类前采用粒子群算法进行样本缩减,每一个粒子的维对应一个样本状态,通过更新粒子的速度和位置信息,调整训练样本的状态,引导粒子向分类最优的样本状态组合方向移动,去除样本中对分类不起作用的非支持向量和冗余的支持向量所对应的样本,生成新的缩减样本,进行分类训练,从而达到提高训练效率的目的。基于大规模遥感图像数据集的分类实验表明,此方法在确保不降低分类精度的前提下减少了分类时间。