摘要
[目的]分析耕地面积变化影响因素的重要性,以便科学预测耕地资源数量,为保护耕地资源服务。[方法]以属于黄土高原地区的甘肃省庆阳市为例,尝试采用随机森林算法构建耕地面积预测模型,与BP神经网络模型的预测结果进行对比,并对耕地面积变化影响因素重要性进行排序。[结果]随机森林算法预测结果的相对误差和均方根误差均小于BP神经网络的,预测精度高,结果稳定。它预测出2020,2025,2030年的耕地面积分别为4.515×105,4.513×105,4.512×105 hm2,呈现减少的趋势;主要影响因素重要程度排序为:农业机械总动力>农业人口>地区生产总值>固定资产投资额。[结论]随机森林算法适合于耕地面积预测,且能够测度耕地面积变化影响因素的重要程度。
-
单位甘肃省国土资源规划研究院; 中国地质大学(武汉); 甘肃农业大学