摘要
特征提取是实现目标识别的关键,而在海洋环境中,复杂的环境噪声使得海洋目标的特征提取异常困难。针对复杂海洋噪声下特征提取难的问题,提出一种基于改进深度自编码网络的特征提取方法对目标辐射噪声进行特征提取和识别。该方法通过深度自编码模型逐层学习提取数据中的抽象特征,但是针对海洋数据的样本数量少,呈现一定的随机性,随着模型网络层数加深,会出现梯度消失问题,为了解决该问题,在最后一层隐藏层的输入值中加入第一层的特征值,使得对整个网络的优化过程在两条通道中同时进行,有效地避免了单一通道中由于连乘导致的梯度消失问题。实验结果表明,与传统方法相比,所提算法能够有效地对舰船辐射噪声进行特征提取和分类,并具有良好的鲁棒性。
- 单位