摘要

基于卷积神经网络的雾霾环境视觉目标检测,通常直接利用无雾条件下清晰的数据集对网络进行训练,网络无法通过训练集获取雾霾图像下目标的特征权重配置,因而检测效果不佳。为了提高雾霾环境下目标检测效果,从数据集构建角度入手,提出了一种在无雾图像上生成带雾图像的方法。首先以KITTI-objection数据集作为原始无雾图像,利用改进的Monodepth无监督深度估计方法生成原始图像的深度图像。然后构造几何先验深度模板,以图像熵为权值与深度图进行融合,并根据大气散射模型,由深度图像得到雾图像。最后,采用基于二阶的Faster-RCNN和基于一阶的YOLOv4两种典型的目标检测架构,对原始数据集、雾数据集、混合数据集进行训练,并对室外自然雾霾场景数据集RESIDE-OTS进行检测。实验结果表明,使用混合数据集训练下的模型检测效果最好,在YOLOv4模型下mAP值提升了5.6%,在Faster R-CNN网络下mAP值提升了5.0%,从而有效提升了雾霾环境下卷积神经网络的目标识别能力。

  • 单位
    精密测试技术及仪器国家重点实验室; 天津大学