摘要

在计算机辅助设计与制造系统中,加工特征识别是一项关键技术。针对传统的特征识别技术可扩展性差、鲁棒性差等问题,提出一种基于点云深度学习的加工特征识别方法。通过对加工特征表面进行均匀点采样,构建加工特征的点云数据集。使用K近邻算法构建点云的旋转不变表示,提出一种融入几何先验知识的点云分类网络。对于多特征模型的点云数据,提出一种加工特征点集的提取方法和相交特征的分离方法。通过具体实例验证了所提方法的有效性,表明该方法能识别CAD模型中的单一特征和相交特征。