摘要

基于U-Net框架提出一种新的算法用于心电波形的分割。该方法将一定长度的心电信号作为输入,输出P波、QRS波和T波的分割图像,同时定位各个特征波的起始点和终止点,创新性地提出了多通道空洞卷积加上注意力机制的模型结构,并设计了一种数据增强公式用于增加数据的多样性。本研究提出的方法在LUDB上进行训练测试,在QTDB上验证算法的泛化能力。实验结果表明,所提的算法在LUDB的平均灵敏度、平均阳性预测率、平均F1分数分别为99.41%、98.90%、98.75%;在QTDB的平均灵敏度、平均阳性预测率、平均F1分数分别为98.65%、98.43%、98.23%,这说明本文算法效果更好,并具有优异的泛化性能。