摘要
提出一种基于密度的聚类方法(DBSCAN)和堆栈式降噪自编码器(SDAE)结合的风电机组性能预测及异常运行工况预警方法。首先采用DBSCAN算法对机组监控与数据采集(SCADA)系统历史运行数据进行清洗,然后利用SDAE建立风电机组的正常运行性能预测模型。基于该模型,采用时移滑动窗口方法构建能准确反映风电机组异常状态的识别指标,并根据统计学区间估计理论合理确定指标阈值,以实现异常工况预警。采用某风电机组的真实历史运行数据进行故障重演试验。结果表明:该方法能够在故障发生前及时对风电机组的异常运行工况发出预警,验证了该方法的有效性。
- 单位